Observe: This submit is an excerpt from the forthcoming e-book, Deep Studying and Scientific Computing with R torch. The chapter in query is on the Discrete Fourier Remodel (DFT), and is situated partly three. Half three is devoted to scientific computation past deep studying.
There are two chapters on the Fourier Remodel. The primary strives to, in as “verbal” and lucid a means as was potential to me, forged a light-weight on what’s behind the magic; it additionally exhibits how, surprisingly, you possibly can code the DFT in merely half a dozen strains. The second focuses on quick implementation (the Quick Fourier Remodel, or FFT), once more with each conceptual/explanatory in addition to sensible, code-it-yourself components.
Collectively, these cowl much more materials than might sensibly match right into a weblog submit; subsequently, please contemplate what follows extra as a “teaser” than a totally fledged article.
Within the sciences, the Fourier Remodel is nearly all over the place. Acknowledged very typically, it converts information from one illustration to a different, with none lack of info (if performed appropriately, that’s.) If you happen to use torch
, it’s only a operate name away: torch_fft_fft()
goes a method, torch_fft_ifft()
the opposite. For the person, that’s handy – you “simply” must know easy methods to interpret the outcomes. Right here, I wish to assist with that. We begin with an instance operate name, enjoying round with its output, after which, attempt to get a grip on what’s going on behind the scenes.
Understanding the output of torch_fft_fft()
As we care about precise understanding, we begin from the only potential instance sign, a pure cosine that performs one revolution over the whole sampling interval.
Place to begin: A cosine of frequency 1
The way in which we set issues up, there can be sixty-four samples; the sampling interval thus equals N = 64
. The content material of frequency()
, the under helper operate used to assemble the sign, displays how we symbolize the cosine. Particularly:
[
f(x) = cos(frac{2 pi}{N} k x)
]
Right here (x) values progress over time (or area), and (ok) is the frequency index. A cosine is periodic with interval (2 pi); so if we wish it to first return to its beginning state after sixty-four samples, and (x) runs between zero and sixty-three, we’ll need (ok) to be equal to (1). Like that, we’ll attain the preliminary state once more at place (x = frac{2 pi}{64} * 1 * 64).
Let’s shortly verify this did what it was speculated to:
df information.body(x = sample_positions, y = as.numeric(x))
ggplot(df, aes(x = x, y = y)) +
geom_line() +
xlab("time") +
ylab("amplitude") +
theme_minimal()

Now that we’ve the enter sign, torch_fft_fft()
computes for us the Fourier coefficients, that’s, the significance of the varied frequencies current within the sign. The variety of frequencies thought-about will equal the variety of sampling factors: So (X) can be of size sixty-four as properly.
(In our instance, you’ll discover that the second half of coefficients will equal the primary in magnitude. That is the case for each real-valued sign. In such circumstances, you possibly can name torch_fft_rfft()
as a substitute, which yields “nicer” (within the sense of shorter) vectors to work with. Right here although, I wish to clarify the final case, since that’s what you’ll discover performed in most expositions on the subject.)
Even with the sign being actual, the Fourier coefficients are advanced numbers. There are 4 methods to examine them. The primary is to extract the true half:
[1] 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 32
Solely a single coefficient is non-zero, the one at place 1. (We begin counting from zero, and should discard the second half, as defined above.)
Now wanting on the imaginary half, we discover it’s zero all through:
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0
At this level we all know that there’s only a single frequency current within the sign, specifically, that at (ok = 1). This matches (and it higher needed to) the way in which we constructed the sign: specifically, as undertaking a single revolution over the whole sampling interval.
Since, in principle, each coefficient might have non-zero actual and imaginary components, usually what you’d report is the magnitude (the sq. root of the sum of squared actual and imaginary components):
[1] 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 32
Unsurprisingly, these values precisely replicate the respective actual components.
Lastly, there’s the part, indicating a potential shift of the sign (a pure cosine is unshifted). In torch
, we’ve torch_angle()
complementing torch_abs()
, however we have to keep in mind roundoff error right here. We all know that in every however a single case, the true and imaginary components are each precisely zero; however resulting from finite precision in how numbers are offered in a pc, the precise values will usually not be zero. As an alternative, they’ll be very small. If we take one among these “faux non-zeroes” and divide it by one other, as occurs within the angle calculation, huge values may result. To stop this from taking place, our customized implementation rounds each inputs earlier than triggering the division.
part operate(Ft, threshold = 1e5) {
torch_atan2(
torch_abs(torch_round(Ft$imag * threshold)),
torch_abs(torch_round(Ft$actual * threshold))
)
}
as.numeric(part(Ft)) %>% spherical(5)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0
As anticipated, there isn’t any part shift within the sign.
Let’s visualize what we discovered.
create_plot operate(x, y, amount) {
df information.body(
x_ = x,
y_ = as.numeric(y) %>% spherical(5)
)
ggplot(df, aes(x = x_, y = y_)) +
geom_col() +
xlab("frequency") +
ylab(amount) +
theme_minimal()
}
p_real create_plot(
sample_positions,
real_part,
"actual half"
)
p_imag create_plot(
sample_positions,
imag_part,
"imaginary half"
)
p_magnitude create_plot(
sample_positions,
magnitude,
"magnitude"
)
p_phase create_plot(
sample_positions,
part(Ft),
"part"
)
p_real + p_imag + p_magnitude + p_phase

It’s honest to say that we’ve no purpose to doubt what torch_fft_fft()
has performed. However with a pure sinusoid like this, we will perceive precisely what’s happening by computing the DFT ourselves, by hand. Doing this now will considerably assist us later, after we’re writing the code.
Reconstructing the magic
One caveat about this part. With a subject as wealthy because the Fourier Remodel, and an viewers who I think about to range broadly on a dimension of math and sciences schooling, my possibilities to fulfill your expectations, expensive reader, have to be very near zero. Nonetheless, I wish to take the chance. If you happen to’re an knowledgeable on this stuff, you’ll anyway be simply scanning the textual content, looking for items of torch
code. If you happen to’re reasonably aware of the DFT, you should still like being reminded of its internal workings. And – most significantly – should you’re slightly new, and even fully new, to this subject, you’ll hopefully take away (no less than) one factor: that what looks as if one of many biggest wonders of the universe (assuming there’s a actuality by some means akin to what goes on in our minds) might be a marvel, however neither “magic” nor a factor reserved to the initiated.
In a nutshell, the Fourier Remodel is a foundation transformation. Within the case of the DFT – the Discrete Fourier Remodel, the place time and frequency representations each are finite vectors, not features – the brand new foundation appears to be like like this:
[
begin{aligned}
&mathbf{w}^{0n}_N = e^{ifrac{2 pi}{N}* 0 * n} = 1
&mathbf{w}^{1n}_N = e^{ifrac{2 pi}{N}* 1 * n} = e^{ifrac{2 pi}{N} n}
&mathbf{w}^{2n}_N = e^{ifrac{2 pi}{N}* 2 * n} = e^{ifrac{2 pi}{N}2n}& …
&mathbf{w}^{(N-1)n}_N = e^{ifrac{2 pi}{N}* (N-1) * n} = e^{ifrac{2 pi}{N}(N-1)n}
end{aligned}
]
Right here (N), as earlier than, is the variety of samples (64, in our case); thus, there are (N) foundation vectors. With (ok) operating by way of the idea vectors, they are often written:
[
mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}k n}
] {#eq-dft-1}
Like (ok), (n) runs from (0) to (N-1). To grasp what these foundation vectors are doing, it’s useful to quickly change to a shorter sampling interval, (N = 4), say. If we accomplish that, we’ve 4 foundation vectors: (mathbf{w}^{0n}_N), (mathbf{w}^{1n}_N), (mathbf{w}^{2n}_N), and (mathbf{w}^{3n}_N). The primary one appears to be like like this:
[
mathbf{w}^{0n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 0 * 0}
e^{ifrac{2 pi}{4}* 0 * 1}
e^{ifrac{2 pi}{4}* 0 * 2}
e^{ifrac{2 pi}{4}* 0 * 3}
end{bmatrix}
=
begin{bmatrix}
1
1
1
1
end{bmatrix}
]
The second, like so:
[
mathbf{w}^{1n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 1 * 0}
e^{ifrac{2 pi}{4}* 1 * 1}
e^{ifrac{2 pi}{4}* 1 * 2}
e^{ifrac{2 pi}{4}* 1 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{pi}{2}}
e^{i pi}
e^{ifrac{3 pi}{4}}
end{bmatrix}
=
begin{bmatrix}
1
i
-1
-i
end{bmatrix}
]
That is the third:
[
mathbf{w}^{2n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 2 * 0}
e^{ifrac{2 pi}{4}* 2 * 1}
e^{ifrac{2 pi}{4}* 2 * 2}
e^{ifrac{2 pi}{4}* 2 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ipi}
e^{i 2 pi}
e^{ifrac{3 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-1
1
-1
end{bmatrix}
]
And eventually, the fourth:
[
mathbf{w}^{3n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 3 * 0}
e^{ifrac{2 pi}{4}* 3 * 1}
e^{ifrac{2 pi}{4}* 3 * 2}
e^{ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{3 pi}{2}}
e^{i 3 pi}
e^{ifrac{9 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
]
We are able to characterize these 4 foundation vectors by way of their “velocity”: how briskly they transfer across the unit circle. To do that, we merely take a look at the rightmost column vectors, the place the ultimate calculation outcomes seem. The values in that column correspond to positions pointed to by the revolving foundation vector at completely different deadlines. Which means a single “replace of place”, we will see how briskly the vector is transferring in a single time step.
Wanting first at (mathbf{w}^{0n}_N), we see that it doesn’t transfer in any respect. (mathbf{w}^{1n}_N) goes from (1) to (i) to (-1) to (-i); another step, and it could be again the place it began. That’s one revolution in 4 steps, or a step dimension of (frac{pi}{2}). Then (mathbf{w}^{2n}_N) goes at double that tempo, transferring a distance of (pi) alongside the circle. That means, it finally ends up finishing two revolutions general. Lastly, (mathbf{w}^{3n}_N) achieves three full loops, for a step dimension of (frac{3 pi}{2}).
The factor that makes these foundation vectors so helpful is that they’re mutually orthogonal. That’s, their dot product is zero:
[
langle mathbf{w}^{kn}_N, mathbf{w}^{ln}_N rangle = sum_{n=0}^{N-1} ({e^{ifrac{2 pi}{N}k n}})^* e^{ifrac{2 pi}{N}l n} = sum_{n=0}^{N-1} ({e^{-ifrac{2 pi}{N}k n}})e^{ifrac{2 pi}{N}l n} = 0
] {#eq-dft-2}
Let’s take, for instance, (mathbf{w}^{2n}_N) and (mathbf{w}^{3n}_N). Certainly, their dot product evaluates to zero.
[
begin{bmatrix}
1 & -1 & 1 & -1
end{bmatrix}
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
=
1 + i + (-1) + (-i) = 0
]
Now, we’re about to see how the orthogonality of the Fourier foundation considerably simplifies the calculation of the DFT. Did you discover the similarity between these foundation vectors and the way in which we wrote the instance sign? Right here it’s once more:
[
f(x) = cos(frac{2 pi}{N} k x)
]
If we handle to symbolize this operate by way of the idea vectors (mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}ok n}), the internal product between the operate and every foundation vector can be both zero (the “default”) or a a number of of 1 (in case the operate has a part matching the idea vector in query). Fortunately, sines and cosines can simply be transformed into advanced exponentials. In our instance, that is how that goes:
[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} n)
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{-ifrac{2 pi}{64} n})
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{ifrac{2 pi}{64} 63n})
&= frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N)
end{aligned}
]
Right here step one immediately outcomes from Euler’s formulation, and the second displays the truth that the Fourier coefficients are periodic, with frequency -1 being the identical as 63, -2 equaling 62, and so forth.
Now, the (ok)th Fourier coefficient is obtained by projecting the sign onto foundation vector (ok).
As a result of orthogonality of the idea vectors, solely two coefficients is not going to be zero: these for (mathbf{w}^{1n}_N) and (mathbf{w}^{63n}_N). They’re obtained by computing the internal product between the operate and the idea vector in query, that’s, by summing over (n). For every (n) ranging between (0) and (N-1), we’ve a contribution of (frac{1}{2}), leaving us with a last sum of (32) for each coefficients. For instance, for (mathbf{w}^{1n}_N):
[
begin{aligned}
X_1 &= langle mathbf{w}^{1n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{1n}_N, frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N) rangle
&= frac{1}{2} * 64
&= 32
end{aligned}
]
And analogously for (X_{63}).
Now, wanting again at what torch_fft_fft()
gave us, we see we have been capable of arrive on the identical consequence. And we’ve realized one thing alongside the way in which.
So long as we stick with indicators composed of a number of foundation vectors, we will compute the DFT on this means. On the finish of the chapter, we’ll develop code that may work for all indicators, however first, let’s see if we will dive even deeper into the workings of the DFT. Three issues we’ll wish to discover:
-
What would occur if frequencies modified – say, a melody have been sung at a better pitch?
-
What about amplitude modifications – say, the music have been performed twice as loud?
-
What about part – e.g., there have been an offset earlier than the piece began?
In all circumstances, we’ll name torch_fft_fft()
solely as soon as we’ve decided the consequence ourselves.
And eventually, we’ll see how advanced sinusoids, made up of various elements, can nonetheless be analyzed on this means, offered they are often expressed by way of the frequencies that make up the idea.
Various frequency
Assume we quadrupled the frequency, giving us a sign that regarded like this:
[
mathbf{x}_n = cos(frac{2 pi}{N}*4*n)
]
Following the identical logic as above, we will categorical it like so:
[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N)
]
We already see that non-zero coefficients can be obtained just for frequency indices (4) and (60). Choosing the previous, we get hold of
[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{4n}_N, frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N) rangle
&= 32
end{aligned}
]
For the latter, we’d arrive on the identical consequence.
Now, let’s ensure that our evaluation is right. The next code snippet accommodates nothing new; it generates the sign, calculates the DFT, and plots them each.
x torch_cos(frequency(4, N) * sample_positions)
plot_ft operate(x) plot_spacer()) /
(p_real
plot_ft(x)

This does certainly verify our calculations.
A particular case arises when sign frequency rises to the very best one “allowed”, within the sense of being detectable with out aliasing. That would be the case at one half of the variety of sampling factors. Then, the sign will seem like so:
[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{32n}_N + mathbf{w}^{32n}_N)
]
Consequently, we find yourself with a single coefficient, akin to a frequency of 32 revolutions per pattern interval, of double the magnitude (64, thus). Listed below are the sign and its DFT:
x torch_cos(frequency(32, N) * sample_positions)
plot_ft(x)

Various amplitude
Now, let’s take into consideration what occurs after we range amplitude. For instance, say the sign will get twice as loud. Now, there can be a multiplier of two that may be taken outdoors the internal product. In consequence, the one factor that modifications is the magnitude of the coefficients.
Let’s confirm this. The modification is predicated on the instance we had earlier than the final one, with 4 revolutions over the sampling interval:
x 2 * torch_cos(frequency(4, N) * sample_positions)
plot_ft(x)

Thus far, we’ve not as soon as seen a coefficient with non-zero imaginary half. To vary this, we add in part.
Including part
Altering the part of a sign means shifting it in time. Our instance sign is a cosine, a operate whose worth is 1 at (t=0). (That additionally was the – arbitrarily chosen – start line of the sign.)
Now assume we shift the sign ahead by (frac{pi}{2}). Then the height we have been seeing at zero strikes over to (frac{pi}{2}); and if we nonetheless begin “recording” at zero, we should discover a worth of zero there. An equation describing that is the next. For comfort, we assume a sampling interval of (2 pi) and (ok=1), in order that the instance is a straightforward cosine:
[
f(x) = cos(x – phi)
]
The minus signal might look unintuitive at first. But it surely does make sense: We now wish to get hold of a price of 1 at (x=frac{pi}{2}), so (x – phi) ought to consider to zero. (Or to any a number of of (pi).) Summing up, a delay in time will seem as a detrimental part shift.
Now, we’re going to calculate the DFT for a shifted model of our instance sign. However should you like, take a peek on the phase-shifted model of the time-domain image now already. You’ll see {that a} cosine, delayed by (frac{pi}{2}), is nothing else than a sine beginning at 0.
To compute the DFT, we comply with our familiar-by-now technique. The sign now appears to be like like this:
[
mathbf{x}_n = cos(frac{2 pi}{N}*4*x – frac{pi}{2})
]
First, we categorical it by way of foundation vectors:
[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} 4 n – frac{pi}{2})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n – frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n – frac{pi}{2}})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n} e^{-i frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n} e^{ifrac{pi}{2}})
&= frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N)
end{aligned}
]
Once more, we’ve non-zero coefficients just for frequencies (4) and (60). However they’re advanced now, and each coefficients are not similar. As an alternative, one is the advanced conjugate of the opposite. First, (X_4):
[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&=langle mathbf{w}^{4n}_N, frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N) rangle
&= 32 *e^{-i frac{pi}{2}}
&= -32i
end{aligned}
]
And right here, (X_{60}):
[
begin{aligned}
X_{60} &= langle mathbf{w}^{60n}_N, mathbf{x}_N rangle
&= 32 *e^{i frac{pi}{2}}
&= 32i
end{aligned}
]
As typical, we verify our calculation utilizing torch_fft_fft()
.
x torch_cos(frequency(4, N) * sample_positions - pi / 2)
plot_ft(x)

For a pure sine wave, the non-zero Fourier coefficients are imaginary. The part shift within the coefficients, reported as (frac{pi}{2}), displays the time delay we utilized to the sign.
Lastly – earlier than we write some code – let’s put all of it collectively, and take a look at a wave that has greater than a single sinusoidal part.
Superposition of sinusoids
The sign we assemble should be expressed by way of the idea vectors, however it’s not a pure sinusoid. As an alternative, it’s a linear mixture of such:
[
begin{aligned}
mathbf{x}_n &= 3 sin(frac{2 pi}{64} 4n) + 6 cos(frac{2 pi}{64} 2n) +2cos(frac{2 pi}{64} 8n)
end{aligned}
]
I gained’t undergo the calculation intimately, however it’s no completely different from the earlier ones. You compute the DFT for every of the three elements, and assemble the outcomes. With none calculation, nevertheless, there’s fairly a number of issues we will say:
- For the reason that sign consists of two pure cosines and one pure sine, there can be 4 coefficients with non-zero actual components, and two with non-zero imaginary components. The latter can be advanced conjugates of one another.
- From the way in which the sign is written, it’s simple to find the respective frequencies, as properly: The all-real coefficients will correspond to frequency indices 2, 8, 56, and 62; the all-imaginary ones to indices 4 and 60.
- Lastly, amplitudes will consequence from multiplying with (frac{64}{2}) the scaling elements obtained for the person sinusoids.
Let’s verify:

Now, how can we calculate the DFT for much less handy indicators?
Coding the DFT
Fortuitously, we already know what must be performed. We wish to undertaking the sign onto every of the idea vectors. In different phrases, we’ll be computing a bunch of internal merchandise. Logic-wise, nothing modifications: The one distinction is that typically, it is not going to be potential to symbolize the sign by way of just some foundation vectors, like we did earlier than. Thus, all projections will really need to be calculated. However isn’t automation of tedious duties one factor we’ve computer systems for?
Let’s begin by stating enter, output, and central logic of the algorithm to be applied. As all through this chapter, we keep in a single dimension. The enter, thus, is a one-dimensional tensor, encoding a sign. The output is a one-dimensional vector of Fourier coefficients, of the identical size because the enter, every holding details about a frequency. The central thought is: To acquire a coefficient, undertaking the sign onto the corresponding foundation vector.
To implement that concept, we have to create the idea vectors, and for each, compute its internal product with the sign. This may be performed in a loop. Surprisingly little code is required to perform the objective:
dft operate(x) {
n_samples size(x)
n torch_arange(0, n_samples - 1)$unsqueeze(1)
Ft torch_complex(
torch_zeros(n_samples), torch_zeros(n_samples)
)
for (ok in 0:(n_samples - 1)) {
w_k torch_exp(-1i * 2 * pi / n_samples * ok * n)
dot torch_matmul(w_k, x$to(dtype = torch_cfloat()))
Ft[k + 1] dot
}
Ft
}
To check the implementation, we will take the final sign we analysed, and examine with the output of torch_fft_fft()
.
[1] 0 0 192 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 64 0 0 0 0 0 192 0
[1] 0 0 0 0 -96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 96 0 0 0
Reassuringly – should you look again – the outcomes are the identical.
Above, did I say “little code”? In reality, a loop shouldn’t be even wanted. As an alternative of working with the idea vectors one-by-one, we will stack them in a matrix. Then every row will maintain the conjugate of a foundation vector, and there can be (N) of them. The columns correspond to positions (0) to (N-1); there can be (N) of them as properly. For instance, that is how the matrix would search for (N=4):
[
mathbf{W}_4
=
begin{bmatrix}
e^{-ifrac{2 pi}{4}* 0 * 0} & e^{-ifrac{2 pi}{4}* 0 * 1} & e^{-ifrac{2 pi}{4}* 0 * 2} & e^{-ifrac{2 pi}{4}* 0 * 3}
e^{-ifrac{2 pi}{4}* 1 * 0} & e^{-ifrac{2 pi}{4}* 1 * 1} & e^{-ifrac{2 pi}{4}* 1 * 2} & e^{-ifrac{2 pi}{4}* 1 * 3}
e^{-ifrac{2 pi}{4}* 2 * 0} & e^{-ifrac{2 pi}{4}* 2 * 1} & e^{-ifrac{2 pi}{4}* 2 * 2} & e^{-ifrac{2 pi}{4}* 2 * 3}
e^{-ifrac{2 pi}{4}* 3 * 0} & e^{-ifrac{2 pi}{4}* 3 * 1} & e^{-ifrac{2 pi}{4}* 3 * 2} & e^{-ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
] {#eq-dft-3}
Or, evaluating the expressions:
[
mathbf{W}_4
=
begin{bmatrix}
1 & 1 & 1 & 1
1 & -i & -1 & i
1 & -1 & 1 & -1
1 & i & -1 & -i
end{bmatrix}
]
With that modification, the code appears to be like much more elegant:
dft_vec operate(x) {
n_samples size(x)
n torch_arange(0, n_samples - 1)$unsqueeze(1)
ok torch_arange(0, n_samples - 1)$unsqueeze(2)
mat_k_m torch_exp(-1i * 2 * pi / n_samples * ok * n)
torch_matmul(mat_k_m, x$to(dtype = torch_cfloat()))
}
As you possibly can simply confirm, the consequence is similar.
Thanks for studying!
Photograph by Trac Vu on Unsplash