HomeArtificial IntelligenceConstructing Superior MCP (Mannequin Context Protocol) Brokers with Multi-Agent Coordination, Context Consciousness,...

Constructing Superior MCP (Mannequin Context Protocol) Brokers with Multi-Agent Coordination, Context Consciousness, and Gemini Integration


class MCPAgent:
   """Superior MCP Agent with developed capabilities - Jupyter Suitable"""
  
   def __init__(self, agent_id: str, position: AgentRole, api_key: str = None):
       self.agent_id = agent_id
       self.position = position
       self.api_key = api_key
       self.reminiscence = []
       self.context = AgentContext(
           agent_id=agent_id,
           position=position,
           capabilities=self._init_capabilities(),
           reminiscence=[],
           instruments=self._init_tools()
       )
      
       self.mannequin = None
       if GEMINI_AVAILABLE and api_key:
           strive:
               genai.configure(api_key=api_key)
               self.mannequin = genai.GenerativeModel('gemini-pro')
               print(f"✅ Agent {agent_id} initialized with Gemini API")
           besides Exception as e:
               print(f"⚠️  Gemini configuration failed: {e}")
               print("💡 Working in demo mode with simulated responses")
       else:
           print(f"🎭 Agent {agent_id} working in demo mode")
      
   def _init_capabilities(self) -> Record[str]:
       """Initialize role-specific capabilities"""
       capabilities_map = {
           AgentRole.COORDINATOR: ["task_decomposition", "agent_orchestration", "priority_management"],
           AgentRole.RESEARCHER: ["data_gathering", "web_search", "information_synthesis"],
           AgentRole.ANALYZER: ["pattern_recognition", "data_analysis", "insight_generation"],
           AgentRole.EXECUTOR: ["action_execution", "result_validation", "output_formatting"]
       }
       return capabilities_map.get(self.position, [])
  
   def _init_tools(self) -> Record[str]:
       """Initialize out there instruments based mostly on position"""
       tools_map = {
           AgentRole.COORDINATOR: ["task_splitter", "agent_selector", "progress_tracker"],
           AgentRole.RESEARCHER: ["search_engine", "data_extractor", "source_validator"],
           AgentRole.ANALYZER: ["statistical_analyzer", "pattern_detector", "visualization_tool"],
           AgentRole.EXECUTOR: ["code_executor", "file_handler", "api_caller"]
       }
       return tools_map.get(self.position, [])
  
   def process_message(self, message: str, context: Non-obligatory[Dict] = None) -> Dict[str, Any]:
       """Course of incoming message with context consciousness - Synchronous model"""
      
       msg = Message(
           position="person",
           content material=message,
           timestamp=datetime.now(),
           metadata=context
       )
       self.reminiscence.append(msg)
      
       immediate = self._generate_contextual_prompt(message, context)
      
       strive:
           if self.mannequin:
               response = self._generate_response_gemini(immediate)
           else:
               response = self._generate_demo_response(message)
          
           response_msg = Message(
               position="assistant",
               content material=response,
               timestamp=datetime.now(),
               metadata={"agent_id": self.agent_id, "position": self.position.worth}
           )
           self.reminiscence.append(response_msg)
          
           return {
               "agent_id": self.agent_id,
               "position": self.position.worth,
               "response": response,
               "capabilities_used": self._analyze_capabilities_used(message),
               "next_actions": self._suggest_next_actions(response),
               "timestamp": datetime.now().isoformat()
           }
          
       besides Exception as e:
           logger.error(f"Error processing message: {e}")
           return {"error": str(e)}
  
   def _generate_response_gemini(self, immediate: str) -> str:
       """Generate response utilizing Gemini API - Synchronous"""
       strive:
           response = self.mannequin.generate_content(immediate)
           return response.textual content
       besides Exception as e:
           logger.error(f"Gemini API error: {e}")
           return self._generate_demo_response(immediate)
  
   def _generate_demo_response(self, message: str) -> str:
       """Generate simulated response for demo functions"""
       role_responses = {
           AgentRole.COORDINATOR: f"As coordinator, I will break down the duty: '{message[:50]}...' into manageable parts and assign them to specialised brokers.",
           AgentRole.RESEARCHER: f"I will analysis details about: '{message[:50]}...' utilizing my information gathering and synthesis capabilities.",
           AgentRole.ANALYZER: f"Analyzing the patterns and insights from: '{message[:50]}...' to supply data-driven suggestions.",
           AgentRole.EXECUTOR: f"I will execute the required actions for: '{message[:50]}...' and validate the outcomes."
       }
      
       base_response = role_responses.get(self.position, f"Processing: {message[:50]}...")
      
       time.sleep(0.5) 
      
       additional_context = {
           AgentRole.COORDINATOR: " I've recognized 3 key subtasks and can coordinate their execution throughout the agent staff.",
           AgentRole.RESEARCHER: " My analysis signifies a number of related sources and present developments on this space.",
           AgentRole.ANALYZER: " The information exhibits fascinating correlations and actionable insights for determination making.",
           AgentRole.EXECUTOR: " I've accomplished the requested actions and verified the outputs meet high quality requirements."
       }
      
       return base_response + additional_context.get(self.position, "")
  
   def _generate_contextual_prompt(self, message: str, context: Non-obligatory[Dict]) -> str:
       """Generate context-aware immediate based mostly on agent position"""
      
       base_prompt = f"""
       You might be a sophisticated AI agent with the position: {self.position.worth}
       Your capabilities: {', '.be a part of(self.context.capabilities)}
       Out there instruments: {', '.be a part of(self.context.instruments)}
      
       Current dialog context:
       {self._get_recent_context()}
      
       Present request: {message}
       """
      
       role_instructions = {
           AgentRole.COORDINATOR: """
           Give attention to breaking down complicated duties, coordinating with different brokers,
           and sustaining total undertaking coherence. Contemplate dependencies and priorities.
           Present clear activity decomposition and agent assignments.
           """,
           AgentRole.RESEARCHER: """
           Prioritize correct info gathering, supply verification,
           and complete information assortment. Synthesize findings clearly.
           Give attention to present developments and dependable sources.
           """,
           AgentRole.ANALYZER: """
           Give attention to sample recognition, information interpretation, and perception technology.
           Present evidence-based conclusions and actionable suggestions.
           Spotlight key correlations and implications.
           """,
           AgentRole.EXECUTOR: """
           Think about sensible implementation, end result validation,
           and clear output supply. Guarantee actions are accomplished successfully.
           Give attention to high quality and completeness of execution.
           """
       }
      
       return base_prompt + role_instructions.get(self.position, "")
  
   def _get_recent_context(self, restrict: int = 3) -> str:
       """Get current dialog context"""
       if not self.reminiscence:
           return "No earlier context"
      
       current = self.reminiscence[-limit:]
       context_str = ""
       for msg in current:
           context_str += f"{msg.position}: {msg.content material[:100]}...n"
       return context_str
  
   def _analyze_capabilities_used(self, message: str) -> Record[str]:
       """Analyze which capabilities have been possible used"""
       used_capabilities = []
       message_lower = message.decrease()
      
       capability_keywords = {
           "task_decomposition": ["break down", "divide", "split", "decompose"],
           "data_gathering": ["research", "find", "collect", "gather"],
           "pattern_recognition": ["analyze", "pattern", "trend", "correlation"],
           "action_execution": ["execute", "run", "implement", "perform"],
           "agent_orchestration": ["coordinate", "manage", "organize", "assign"],
           "information_synthesis": ["synthesize", "combine", "merge", "integrate"]
       }
      
       for functionality, key phrases in capability_keywords.gadgets():
           if functionality in self.context.capabilities:
               if any(key phrase in message_lower for key phrase in key phrases):
                   used_capabilities.append(functionality)
      
       return used_capabilities
  
   def _suggest_next_actions(self, response: str) -> Record[str]:
       """Recommend logical subsequent actions based mostly on response"""
       options = []
       response_lower = response.decrease()
      
       if "want extra info" in response_lower or "analysis" in response_lower:
           options.append("delegate_to_researcher")
       if "analyze" in response_lower or "sample" in response_lower:
           options.append("delegate_to_analyzer") 
       if "implement" in response_lower or "execute" in response_lower:
           options.append("delegate_to_executor")
       if "coordinate" in response_lower or "handle" in response_lower:
           options.append("initiate_multi_agent_collaboration")
       if "subtask" in response_lower or "break down" in response_lower:
           options.append("task_decomposition_required")
          
       return options if options else ["continue_conversation"]

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -
Google search engine

Most Popular

Recent Comments